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Superpositions of Multifractals: Generators of 
Phase Transitions in the Generalized 
Thermodynamic Formalism 
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We investigate the superposition of multifractals in the generalized thermo- 
dynamic formalism. It is shown analytically that phase transitions of first and 
second order are obtained and that the topology of the corresponding critical 
lines endows bicritical behavior. We demonstrate that these phase transitions 
can be observed in the spectrum of fractal dimensions and in the spectra of 
related quantities. Therefore, the obtained results are of importance for the 
interpretation of experimental systems. 

KEY WORDS: Multifractals; generalized thermodynamic formalism; projec- 
tions of fractal measures; phase transitions. 

1. I N T R O D U C T I O N  

In many  exper imental  s i tuat ions it is impossible to observe the full mult i -  
fractal s tructure of  the object  of  interest since the desired informat ion is 
only accessible in the form of  projections.  Examples  are the observat ion  of  
clouds, images of fractal structures in the universe, or, quite generally, of  
fractal s tructures with d imension larger than that  of  the image. F o r  a mult i -  
fractal analysis,  to derive the consequences of such a s i tuat ion consti tutes 
a nontr ivial  theoret ical  problem. Correspondingly  there exist only very 
few general  results for this problem,  cl-3~ A related but  simpler s i tuat ion is 
obta ined if one considers the superposi t ion of  two or  more  independent  
multifractals with measure.  Such sums of  mult ifractal  measures,  which can 

t lnstitut f'tir Theoretische Physik, Universit/it Kiel, D-24118 Kiel, Germany. E-mail: 
radons@theo-physik.uni-kiel.de. 

2 lnstitut fiir Theoretische Physik, Universit/it Ziirich-Irchel, CH-8057 Ziirich-Irchel, CH-8057 
Ziirich, Switzerland. E-mail: stoop@msp.chem.ethz.ch. 

1063 

0022-4715/96/0209-1063109.50/0 �9 1996 Plenum Publishing Corporation 



1064 Radons and Stoop 

be regarded as a special case of  the projection problem, give rise to non- 
trivial behavior  even in the simplest case: In ref. 4 it is shown that  sums of 
multifractal measures supported by the same equal-scale Cantor  set lead to 
first- and unexpected second-order phase transitions ~5-8~ in the thermo- 
dynamics of  multifractals. ~9-14~ Here we extend these results to the case of 
multiscale Cantor  supports.  The appropr ia te  tool for the investigation of 
this more  general case is the generalized or bivariate thermodynamic  
formalism as elaborated in refs. 15 and 16 and reviewed, e.g., in refs. 17 
and 18. 

2. RESULTS 

In the following we consider sums of multifractal sources where all of 
the sources are complete, self-similar two-scale multifractals with multi- 
plicative measures. One of these multifractals is then determined by the 
probabilities P,,P2 and the associated length scales Ii, 12 (see, e.g., refs. 19 
and 20). The hierarchical structure of  this multiplicative process is captured 
in the generalized parti t ion sum ~j ~' ~4-241 

Z,(q, fl, N ) =  ,r,-,t"q/•+ (pq2l~) g (1) 

where N denotes the level of  the construct ion hierarchy. The probabili t ies 
are normalized: Pl +P2 = 1. In order to label the M independent com- 
ponents  we use the index v. Accordingly, the system is characterized by the 
set of  quantities pi(v), li(v), where i =  1, 2 and v = 1 ..... M. In the following 
we investigate the case of the superposit ion /t of M = 2  multifractal 
measures/1(  1 ) and ll(2), i.e., It = ~z( 1 ) ll( 1 ) + ~(2)/l(2),  where the param-  
eters 7~(v) are the weights of the contributions of  the involved multifractals 
[n( 1 ) + n(2) = 1 ]. A further simplification is obtained if the supports  of  the 
two measures are the same. This implies t h a t / i ( 1 ) = / , ( 2 )  = 1~ for all i. The 
parti t ion sum of such a superposit ion then has the form 

Z(q, fl, N)= ~ [x(1)pl(l)Jp2(1)N-J+rc(2)p,(2)Jp2(2)g-J]q 
j=O 

x (/J IN-J)/ '  (2) 

In the following we assign without loss of  generality the index v = 1 to the 
system with the larger value of p~, i.e., p~( 1 ) > pt(2).  In order to evaluate 
the parti t ion sum of Eq. (2) in the limit of  large N, we introduce the ratio 

=j/N and write Z as an integral 

f2 Z(q, fl, N) ~ e -Ng(~''q'/') d~ (3) 
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For n( 1 ), n(2) ~ 0 the function g is composed of two contributions: 

g(~, q, fl) = g,(~, q, fl) 0(~ - ~o) + gz(~, q, fl) 0(~o - ~) 

with 

(4) 

g,,(~, q, fl) -- ~ In ~ + (1 - ~ )  ln(1 - ~ )  

- ~ [ q l n p t ( v ) + f l l n  l l ] - ( 1 - ~ ) [ q l n p 2 ( v ) + f l l n  12] (5) 

where O(x) denotes the step function and G0 has the value 

~0 = { 1 + ln[pl(2)/pl(1)]/ln[p2(1)/p2(2)] } - i  (6) 

This value is derived from the condition that the contributions from 
sources 1 and 2 to the partition sum are of the same order in the thermo- 
dynamic limit. With the saddle point approach the generalized free energy 

r(q, fl) = - lim ln[Z(q, fl, N)] /N  (7) 
N ~ r  

can be written as 

r(q, fl) = g( ~( q, fl), q, fl) (8) 

where ~(q, fl) maximizes the integrand in Eq. (3) by minimizing the func- 
tion g for given q and ft. Because of the simplicity of the model, it is 
straightforward to investigate the analyticity properties of the system. Quite 
surprisingly, nontrivial phase transition scenarios are detected. This is 
demonstrated in Fig. 1 where we show two typical phase diagrams in the 
q-fl plane. It can be observed that there are three different domains in both 
situations. In each domain, r(q, fl) is analytic. The separation is by critical 
lines of first order (full lines in Fig. 1) or of critical lines of second order 
(dashed lines). At the intersection point B where two second-order phase 
boundaries merge into a first-order boundary, bicritical behavior 125"26~ is 
obtained, and B is called the bicritical point. In the following let us 
demonstrate these observations analytically. First, note that the value 
~(q, fl) which "minimizes g determines r(q, fl) [cf. Eq. (8)]. We therefore 
concentrate on the location of the minimum of g. Since, according to 
Eq. (4), the function g is composed of two functions gl and g2, we end up 
with three distinct cases: In the first case the minimum of g is provided by 
the minimum of gl. Then r(q, fl) is equal to 

rv(q, fl) = - ln [p l ( v )  q 1~ + P2(V) q l~] (9) 
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Fig. 1. Two typical phase diagrams for the superposition of two multifractal measures p( 1 ) 
and/ t (2)  [parameters: (a) pj( 1 ) = 0.9, p~(2) = 0.7, (b) Pt( 1 ) = 0.7, pl (2)  = 0.1 ]. Generically, 
there exist three phases which are separated by critical lines of first (full lines) and second 
order (dashed lines). Their intersection point B is a bicritical point. Note that the phase 
diagrams do not depend on I I and 12 if p is measured in units of ln(Ijll) [ see Eqs. (11) and 
(12)].  Therefore, these units were used also in the following Figs. 2-7. 

where v = 1. Note  that this expression is just the free energy of  the isolated 
first source. The second case arises analogously ,  with v = 2 .  There is, 
however,  a third case, which occurs if the m i n i m u m  is found at ~ = Go 
[Eq. (6)] .  In this case, the locat ion of  the min imum is found at the inter- 
section of  the two  branches g~ and g2; the corresponding r0(q, fl) is given 
by 

r0(q, fl) = g(~)[~=r (10) 

All three cases are obtained in Fig. l a if, for instance, the parameter q is 
held fixed at q = - 1  and fl assumes the values fl = - 2 ,  1, and 4, respec- 
tively. F i g u r e  2 s h o w s  th e  c o r r e s p o n d i n g  p i c t u r e s  o f  the  free e n e r g y  
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Fig. 2. The free energy functional giG, q, P), gq. (4), for each of the three phases on the line 
q = -1 .  (a) p = -2 :  A minimum on the right of the vertical line (located at Go = 0.3608... [ see 
Eq.(6)] means that the system is in phase_l corresponding to multifractal measure p(1) 
(b) p=4:  The minimum is left of ~0, meaning that the system is in phase_2 where measure 
p(2) dominates. (c) A new phase_O appears if the minimum is at ~0, e.g., for p -- 1 (parameters 
as in Fig. lb with l l . =  1/3, / 2 = 1/9). 

funct ionals  g. In the f o l l o w i n g  w e  derive where  the phase  transit ions occur 
as a funct ion  o f  the variables  q, fl and w e  w o r k  out  the order o f  the trans- 
itions. By  a c o n t i n u o u s  var iat ion  of  parameter  fl we  arrive at the s i tuat ions  
s h o w n  in Fig. 3. T h e y  are characterist ic  for the transi t ion be tween  phase_l 
and phase_O and b e tween  phase_O and phase_2, respectively.  It is n o w  
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Same as Fig. 2, with p chosen to hit second-order critical lines. (a) p =Pol: the mini- 
mum of gl(~, q, P) coincides with '~u; (b) p =Po2: arg min~ g_,(~, q, p) = ~o. 
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Fig. 4. The first derivative of the generalized free energy at(q, fl)/afllq=_, is continuous at 
the critical points flo~(q= - 1 )  and flo2(q = - 1 ) ,  but discontinuous in the second derivative. 
This shows that here the phase transitions are of second order [parameters pi(v), li as in 
Fig. 2]. 
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important  to note that the phase boundaries flv~(q) between the phases v 
and 9 are obtained from the conditions rv(q, f l )=  r~(q,/~). From this it is 
easily found that 

flo,,,(q) = - ( I n  ln[p~(1)/p~(2)] +q in p,(v)'~ /, Ii 
ln[p2(2)/p2(1)] p - - ~ . ) / m  ~ (11) 

where v = 1, 2. The order of the phase transitions is determined by the 
derivates of the free energy r(q, p). In Fig. 4, we again keep q fixed at the 
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Fig. 5. Same as Fig. 2, but for q= l  and (a) fl=-0.5, (b) fl=0.5, and (c) p=pu=0 .  
Obviously the "order parameter" Cmi. jumps at the transition from (a) to (b) via (c). This 
first-order behavior is verified in Fig. 6. 
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value q = -  I and plot the analytically derived first derivative of r with 
respect to fl as we cross the phase border upon variation of ft. The con- 
tinuity of the first derivative and the apparent jump in the second 
derivative clearly identify a second-order phase transition. The very same 
situation holds for the whole left half-plane q < 0. 

On the right half-plane, however, a direct transition between phase_l 
and phase~2 is found. The corresponding phase boundary is given by 

[lnP,(1)q--P,(2)~h/ln 11 
f l " - ' ( q ) = - - \  p,_(2)q--p,_(1) J~ 12 (12) 

In Fig. 5 we show the free energy functional g below, above, and at the 
critical line flj. ,_(q). Again, the minimum of g determines the free energy z. 
From the plots it is clear that the location of the minimum (which plays 
the role of the order parameter) jumps as the critical line is crossed. This 
typical first-order behavior is accordingly verified in Fig. 6, where one finds 
that the first derivative of z with respect to fl jumps upon variation of fl as 
we cross the phase boundary along the line q-- 1. 

Clearly, phase transitions are important features by themselves. They 
gain, however, even more importance if they can be connected with obser- 
vations from experiments. In experiments, usually the generalized dimen- 
sionstlO. 27)Dq or the spectrum of dimensions I~ll f(c~) is measured. Dq can 
be obtained from the zeros of the generalized free energy r(q, fl(q))=0 as 
Dq = -fl(q)/(q-1 ).c~71 The function --fl(q) is usually denoted by r(q) and 
its Legendre transform is the spectrum of dimensions f(c0. The point of 
interest is whether the phase transition detected above have an effect on 
these functions. We therefore concentrate on the level line r(q, f l )=0.  In 
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Fig.  6. S a m e  as  Fig. 4, bu t  o n  the  l ine q = 1. 
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the c o n t o u r  plots of  Fig. 7, this l ine can  easily be identified. In  bo th  pic- 
tures, the zero-level line crosses the f i rs t-order  phase b o u n d a r y  at the po in t  

(qlst, fllst) = ( l ,  0). This  is t rue in general,  since tr ivially r(q) = ( q -  1) Dq is 
zero for q = 1, a n d  f rom Eq. (12), fl~. 2(q = 1 ) =  0. Therefore,  the f irs t-order 
phase t r ans i t ion  is a lways detected in exper iments  to which  ou r  theoret ical  
set t ing applies. In  cont ras t ,  the presence of  the second-order  phase 

Fig. 7. Contour lines (z/r = 2) of the generalized free energy r(q, ,8) for the cases of Fig. 1 and 
for / t = 1/3, 12 = 1/9. The zero-level line (full line) is the well-known free energy r(q) of ref. 11. 
The first- and second-order phase transitions show up in the latter curves as crossings with 
the critical lines (dashed, same as in Fig. 1): (a) (PI(1) =0.9, p 1(2)=0.7) yields a first-order 
transition only, (b) (pt(l) = 0.7, p t(2) = 0.1) yields a first- and a second-order phase transition 
in r(q). 
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transition may or may not be observable in r(q), depending on the system 
parameters. This is clearly seen in Fig. 8, where the first derivative ar(q)/Oq 
is depicted for the two cases shown in Fig. 7. 

In the following we derive analytically the critical q value q2nd where 
the second derivative of r(q) is discontinuous. From this result we will be 
able to find the parameter regime where the second-order phase transition 
is observable. In order to calculate the critical value q2nd, we observe that 
this value can determined from the crossing of the phase boundary flo,,(q) 
for v =  1 or v = 2  by the zero-level line f l = - r v ( q )  of rv(q, fl). Although 
there is in general no explicit analytical expression for the solution of the 
equation r~(q, f l )=0 ,  the defining equation rv(q, fl=flov(q))=O can be 
solved for q, which yields the desired solution q2,d provided that q ~< 0. 
Proceeding in this way, one obtains that 
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Fig. 8. For the two cases of Fig. 7 we show plots of the analytic results for the derivative 
ar(q)/c3q. In both cases a jump is observable. The discontinuity in the second derivative, 
however, appears only in the case corresponding to Fig. 7b. 
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where 

B In 7+ In[ 1 + exp(B)] 
q2,d(v) = (13) 

lnpl(v) + In T. ln[pt(v)/p2(v)] 

ln[p,(1)/p,(2)] (In l, 
= In and in T= \----=ln/l - 1 ln[ pz( 2 )/p,_(1) ] J 

--1 

Depending on whether the transition is from phase_l to phase_O or from 
phase_2 to phase_O, the value v = 1 or v = 2, respectively, has to be taken. 

is the fl value of the bicritical point in units of In 12/ln l~ [cf. Eqs. (I1), 
(12)] and Tis recognized as an effective length scale if rv(q, fl) is expressed 
in these rescaled coordinates. This means that in order to determine q2nd, 
the original length scales l~ and 12 are not explicitly needed, since only the 
combination In 12fln Ii appears in the above expression. In the limit Ii --* 12 
the expression simplifies to 

q2,o(v) = __ ln[pl(v)/p,_(v)] 

a result which has been obtained previously. 14~ Equation (13) can be 
rewritten in a more symmetrical form as 

1 1 ) r(q=O, fl=fl).~(q=O)) 
q'-"d(V)= i-~1 l n ~  lnp,(v)/ln lt--lnp2(v)/ln 12 

(14) 

The numerator r in this equation represents just the generalized free energy 
at the bicritical point. Equation (14) is more easily obtained from the inter- 
section of the zero level of to(q, fl) with the phase boundaries flo,.(q), which 
is an alternative but equivalent criterion for the occurrence of the second- 
order phase transition. From the latter it easily inferred that at most one 
intersection and therefore only one second-order transition is possible. As 
before, the expression for q2nd [Eq. (14)] is valid only as long as negative 
values are produced. As one of the parameters, e.g., pl(1), is varied, a 
change in the sign of q_,nd can be caused in two ways: either by a transition 
through the pole, determined by 

lnpl(v) In pz(v) 

In/l  In l_, 
(15) 

or by a change of the sign of the generalized free energy at the bicritical 
point. For the latter to take place, the bicritical point has to cross the zero- 
level line of r(q, fl). While doing so, the analytical form q_,,d(1) changes to 
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q2n,~(2). These scenarios are illustrated in Fig. 9a, where p~(1) is varied in 
the interval [0, 1 ] for fixed p1(2)=  0.4 and 12 =/~. As a simple consequence 
of this scenario, we may conclude that the boundaries which determine the 
onset of the occurrence of the second-order phase transition in the param- 
eter space are simply given by Eq. (15) with v = 1 and v = 2. Note that this 
equation can also be expressed as D ~ ( v ) =  D~{v),  where D+ o~(v) are the 
asymptotic slopes of the functions rv(q). (lt~ These conditions are best 
understood in connection with the results for the fl0~) spectra discussed 

Fig. 9. (a) The q value at which r,,{q) and the corresponding critical line flo,,(q) intersect is 
plotted as a function ofpz( l  ) for v= 1 (full line) and v = 2  (dashed line). In the parameter 
region (gray shaded) where the intersection occurs at negative q values, q is identical with 
the critical value qana. (b) In the symmetry-reduced pt( l ) -pl(2)  parameter regime (dashed 
triangle) there exists a rectangle R, Eq.(16), where the second-order phase transition is 
observable (gray shaded). On the solid line the numerator of Eq. (13) vanishes. It separates 
the parameter regimes where the expressions for q2,,a{ 1 ) and q2,a{2) are valid, respectively. 
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below. For given 1~ and 12, Eq. (15) is a transcendental equation for p~(v) 
[since p2(v)= 1 -p t (v ) ] .  Denoting the larger of the solutions by p*, one 
obtains as the parameter regime for the existence of the second-order phase 
transition the rectangle 

R = [p* ~ pl(1) ~ 1] x [0 ~<p~(2) ~<p*] (16) 

[remember that by symmetry we may restrict ourselves to p~(1)>~p,(2)]. 
Thus, for any combination of length scales 1~, 12, there exists a regime in 
the p,(1)-p~(2) plane where a second-order transition occurs. For 12 = l i  
(which has been used in the previous figures) one obtains p* = (x//-5 - 1 )/2. 
This region, together with the line where the analytic form for q2nd changes 
from q2,d(1) to q2.d(2), is depicted in Fig. 9b. 

The effect of these phase transitions is more drastically exhibited in the 
function f(ct), the Legendre transform of r(q) I1.), which will allow us to 
gain a deeper insight into the mechanisms leading to the phase transitions. 
Figure 10 shows the f(00 curves corresponding to the cases of Fig. 7. 
Whereas the first-order phase transition is detected in both figures as a 
straight-line segment, t28) the second-order phase transition (present only in 
Fig. 7b) is observed as a stopping point in the f(~) curve with finite left- 
hand derivative. Note that the stopping point at 0~ = ~max is identical with 
the intersection point of the curves f 1(00 and f2(~) which correspond to the 
isolated measures/~(1 ) and/t(2), respectively. This fact is characteristic for 
the observed second-order phase transition. In order to make this point 
clear we consider the scaling behavior of the isolated measures/~( 1 ),/a(2), 
respectively. Let us denote by ~v(~) the scaling exponent (H61der exponent) 
of the measure p(v) restricted to the fractal subset S(~) of the support S 
of p, where ( is some real number in the interval [0, 1 ] (recall that [cf. 
Eqs. (2), (3)] j =  ~N is the number of digits one in the binary addresses of 
the fractal elementsJ ~9~ For the two-scale Cantor measure, ev(() is given 
byll*l 

lnpl(v) + (1 - ~) In p2(v) 
~v(~) = (17) 

In Ii + (1 - ~ )  In 12 

The fractal dimension (Hausdorff dimension) of S(~) is given by 

In ~ + (1 -~ ) ln (1  - ~ )  
f(~) - (18) 

In ll + (1 - ~ )  In 12 

822/82/3.-4-30 
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Fig. 10. The Legendre transforms f(ct) (full line) of the functions r(q) of Fig. 7 are known 
analytically. The first-order transition appears as a straight-line segment (dashed) on the 
bisectrix f(~x)=cx [in (a) and (b)]. The second-order transition is recognized as a stopping 
point off(et) with a finite slope at 0q.ax case (b)]. The stopping point is identical with the 
intersection point of the curves ft(ct) and fz(ct) (dotted lines) corresponding to the separate 
measures lt( 1 ) and/t(2). 

The curves f,.(~) are then obtained by solving Eq. (17) for ~ and inserting 
this expression into Eq. (18), which yields 

lnp2(v) --ct n l 2 ) 
f,,(Ct) = f ~ -- l n [ p 2 ( v ) / p l ( v ) ]  --o~ ln(12/l~) 

(19) 

Now remember that the phase_O is characterized by the unique value 
= Go, Eq. (6), where the two contributions in Eq. (2) are asymptotically 

of the same order. The latter condition can also be written as 
ctt(~ o) = ct2(~o), and to(q), the zero-level line of to(q, fl) of Eq. (10), can be 
expressed as to(q)=q.0cv(~o)-f(~o).  This shows that at the transition to 
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phase_O, the scaling exponents ct o = Oro(q)/Oq = cq(~o) = ~z(~o) = ~m~x coin- 
cide. Also the fractal dimensions are identical and equal to f(~o). We 
emphasize, however, that the intersecting of the 'unperturbed' curves f , (~) 
is not a sufficient condition for the occurrence of the second-order phase 
transition [the f (~)  curves of the isolated measures p(v) intersect also in 
the case of Fig. 10a, but no second-order transition is observed]. In addi- 
tion, the parameters have to lie in the rectangle R of Eq. (16). The latter 
condition basically expresses a geometrical relationship between the 
measures p ( l )  and p(2). In order to see this we show in Fig. 11 the func- 
tions ~v((), v = l , 2 ,  of Eq. (17) for case (a) where only a first-order 
transition is present, and for case (b) where in addition the second-order 
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Fig. 11. The functions ct,.(~), v = 1, 2, are shown as full lines, together withf(~)  from Eq. (18) 
(dashed). The singularity exponent ct(~)=min,. ~t,.(~) is monotonous in case (a), whereas in 
case (b) it exhibits a maximum at the intersection point C0. The latter fact is the reason for 
the second-order phase transition. For a given value of a [in the range ofa(r  the va luef(a)  
is found by taking the preimage ~ of ct under the mapping ct(~) and reading off the corre- 
sponding valuef(~).  If there are two preimages [possible only in case (b)],  the value with the 
larger f ( ( )  has to be taken. However, this construction is not valid in the ~t range between the 
two tangencies of ct(~) with f(~),  since f (c t )=  a in this region (first-order phase transition). 
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transition is observable. First note that 0c,(~) is always a monotonous func- 
tion of ~, since 

aoc~(~) In l~.ln 12 . fflnp,(v) Inpz(v ) '~  
O~ = [ ~ l n / ] + ( 1 - ~ ) l n l 2 ]  2 \ ~n~ ln/2 ,/ (20) 

is either positive or negative, depending on the sign of the second factor in 
Eq. (20). Taking into account the results of Fig. 11, this means that in case 
(a) the measures are superimposed such that the strongest singularities 
minr of both measures/~(v), v=  1, 2, lie on the same set S(~ = 1) and 
also the weakest singularities maxr add up on the same set S(~ = 0). 
In contrast, for case (b) the superposition is such that minr and 
maxr are combined on S(~= 1), and maxr is combined with 
minr on the set S(~ = 0). In order to see that this argument actually 
explains the f (a )  spectra of Fig. 10 and therefore the phase transitions 
encountered, one has to compute the singularity exponents 0c(~) of the 
combined measure/t( 1 )+/~(2). By the same reasoning that leads to Eq. (2), 
one finds 

0c(~:) = lira In[n(1 )P](1 )r (1)(1 -ON+ n(2) pl (2)eNp,_(2)  (I --~)N'] 
N-- ~ ln(l~Nl~t --r 

= min ~v(~) (21) 

This equation is the key for explaining the form of the f(0t) curves in our 
model. It implies that in case (a) possible ~ values are restricted to the 
interval [~(~= 1),0c(~=0)]. In case (b), however, they are confined to 
the interval [0c(~ = 0), 0c(~ = ~o)], since here the maximum is attained at the 
cusp at ~ = ~o. This means that the fractal dimension which corresponds to 
this point is f (~o )>  0, as can be read off in Fig. 11 from the function f ( ( )  
(dashed line). This is in contrast to case (a), which yields the usual result 
f (~  = 0) = f ( ~  = I ) = 0. This explains exactly the behavior of the f(o:) spec- 
tra shown in Fig. 10. 

With this improved understanding of the phase transition behavior we 
may now formulate a necessary and sufficient condition for the occurence 
of a transition of second order. This transition occurs iff the function 0c(~) 
attains its maximum on the open interval (0, 1), which is only possible if 
one of the functions 0cv is decreasing while the other is increasing. With the 
aid of Eq. (20), this can be stated as 

!npl(1) In p,(1)'~(In p,(2) 
In ,  I ]-nn-]~ / \  i-nn~ lnl~/(2))~<O (22) 
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This, of course, defines the same rectangle R [and its equivalent mirror 
image for p~(1)<pl (2) ]  as is given by Eq. (16). Noting that Eq. (22) 
can also be written as [ el(0) - ~ 2(0) ] [ ~ (  I ) - e,_( 1 ) ] ~< 0, one observes that 
at the boundaries of R, one of the multifractal measures p(v) actually 
degenerates to a simple fractal measure, characterized by a single singu- 
larity exponent 0~ = D_o~(v)= D o~(v) and a single fractal dimension. 

In conclusion we mention that the inverse Legendre transform offv(e) 
of Eq. (19) yields a parametrical representation of r,,(q), the zero level of 
rv(q, fl) of Eq. (9). It is given by rv(oc)=~Ofv(o~)/O~-f~(~) and q~(0~)= 
Of,,(e)/O~ [for the choice of parameters 12 = 12 used in the figures there exists 
also an explicit formula for r~(q)]. Thus, with the results presented above, 
we have obtained a full analytical solution for the problem of the super- 
position of two two-scale Cantor measures and the resulting phase trans- 
ition scenarios. 

3. D I S C U S S I O N  

The basic nature of the system investigated suggests that this kind of 
phase transition behavior can also be observed in experiments. It is well 
possible that in the light of our results the unexpected behavior of some 
experimental systems can be explained in a novel and very natural way. 
Although we have restricted our presentation to the superposition of two 
two-scale multiplicative measures, the discussed phenomena are more 
general. In ref. 4, for instance, it has been shown that the inclusion of 
memory in the construction hierarchy (Markovian instead of multiplicative 
measures) leads to the same type of phase transitions. In the equal-scale 
situation treated there one also has an interpretation of the observed phase 
transitions in terms of a simple one-dimensional Ising system with long- 
range interactions. From our discussion of the f(00 curves it follows that an 
extension to more than two measures and more than two scales yields 
similar results. In particular, the possibility for second-order transitions to 
new thermodynamic phases exists also in these very general cases. Finally, 
from a theoretical point of view, it is interesting to note that the treatment 
presented here provides us with one of the few known mechanisms (for 
alternatives see ref. 29) for second-order phase transitions in the thermo- 
dynamics of m~ltifractals. 
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